
Privacy Preserving Client/Vertical-Servers
Classification

Derian Boer, Zahra Ahmadi, and Stefan Kramer

Institut für Informatik, Johannes Gutenberg-Universität,Staudingerweg 9, 55128,
Mainz, Germany

dboer@students.uni-mainz.de, zaahmadi,kramer@informatik.uni-mainz.de

Abstract. We present a novel client/vertical-servers architecture for
hybrid multi-party classification problem. The model consists of clients
whose attributes are distributed on multiple servers and remain secret
during training and testing. Our solution builds privacy-preserving ran-
dom forests and completes them with a special private set intersection
protocol that provides a central commodity server with anonymous con-
ditional statistics. Subsequently, the private set intersection protocol can
be used to privately classify the queries of new clients using the commod-
ity server’s statistics. The proviso is that the commodity server must not
collude with other parties. In cases where this restriction is acceptable, it
allows an effective method without computationally expensive public key
operations, while it is still secure and avoids precision losses. We report
the runtime results on some real-world datasets, and discuss different
security aspects and finally give an outlook on further improvements.

Keywords: vertically partitioned data, private evaluation, secure multi-party
computation, privacy preserving data mining, random forest

1 Introduction

In the era of big data, the costs of storing and processing data is decreasing and
as a result, the amount of collected data for analyzing purposes is also increasing.
In this context, the goal is to make use of the potential knowledge, which addi-
tionally measured or mined data can provide. At the same time, the challenges of
preserving privacy of personal and other sensitive data grow. This challenge be-
comes more important especially when partners collaborate with the intention to
benefit from the union of their data. These partners can also be competitors, for
example, and more or less trusted. Legal privacy concerns have to be considered
as constraints in these cases. Aspects of privacy-preserving data include ran-
domization, k-anonymity and l-diversity, downgrading application effectiveness,
and secure multi-party computing (SMC) [1]. While randomization, k-anonymity
and effectiveness downgrading require a trade-off between effectiveness (quality
of the output) and privacy, SMC techniques do not effect the effectiveness. In
SMC, the data sets remain completely private and hence need not be modified.



Instead, special cryptographic communication protocols allow two or more par-
ties to obtain aggregated results from their combined data, but each of them does
not learn any information more than what can be derived from their common
output. Thereby, the SMC algorithms lead to the same results as non-private
algorithms do. This research area is also known as distributed privacy preserva-
tion, because the integrated data are partitioned on multiple parties who protect
their shares. A special and upcoming case of secure multi-party computing is
private evaluation, where a server has a sensitive model and a client has sensitive
attribute vectors as input. The goal is that the client obtains a classification of
her attribute vector with the use of the server’s model, while the client does not
see the model in plain text and the server is not able to get any parts of the
client’s input and output.

In this work, we consider a special case of the aforementioned private evalua-
tion scenario for decision tree-based classification and set intersection in the se-
cure multi-party computation scenario. We assume that the data of some clients
is vertically partitioned and distributed across multiple servers. It is sufficient if
at least one server knows the class values of the training instances. Each party
can only see her attributes of the common decision trees. The leaf node statistics
are stored by a trusted third party, which does not know any instances or tree
attributes. To new test instances are classified with the following steps:

– The attribute vector of the client is vertically partitioned on the servers.
– The servers run a novel private set intersection protocol so that the client

gets a shared sum of her leaf node identifier from each party. No server learns
other attributes or information about the output at this step.

– Then a client can anonymously ask the commodity server about the class
value statistics of her leaf node.

Our proposed architecture benefits from the following features:

1. A fast computation run time by removing computationally expensive prim-
itives that are used in public key encryption methods such as Vaidya and
Clifton’s method [26],

2. Linear scaling with respect to the number of parties,
3. Accurate results in contrast to randomization based techniques [14, 12],
4. Similar to private evaluation methods, no other party is able to learn any

node statistics and cannot detect the similarities among different records,
however, in contrast to them, our framework can handle distributed decision
trees.

Moreover, there are several applications for this framework in spam filtering,
crime reduction or credit assessment. Police forces, tax authority and financial
institutions might be willing to cooperate in terms of fraud prevention, but only
want to share uncoded personal data in case of reasonable suspicion. Another
typical application is clinical diagnosis. In a real-world setting, the sensitive
data of several institutions might be necessary to come up with a good diagnosis
for a client or a responsible expert, while none of them want to disclose their
information to the others.



The rest of the paper establishes the proposed secure architecture in details.
First, we give an overview on the background in the next section. Section 3
presents the problem setting and the proposed client/vertical server random
forest model. We elaborate experimental results in Section 4. Finally, Section 5
concludes the paper.

2 Background

In the multi-party computing scenario, data can be partitioned among parties
vertically, where the parties have different attributes of the same data objects,
or horizontally, where the parties have different data objects of a compatible
structure. There have been extensive studies on both partitioning approaches
for privacy preserving decision tree based methods. In the rest of this section,
we first provide an overview of decision tree induction and random forests, then,
we briefly review the private decision tree learning literature for both vertically
distributed data and private evaluation. As the focus of our work lies only on
vertically partitioned data and private evaluation, we discard reviewing the hor-
izontal private decision tree approaches [18, 11, 20].

ID3 and random forest: Decision trees are commonly used not only for solv-
ing classification and regression problems, but also for clustering with cluster
descriptions [2]. A widely-used, intuitive decision tree algorithm is the ID3 algo-
rithm [21] and its extension C4.5. Both use the Shannon entropy and information
gain to create tree branches efficiently. The entropy can be replaced by other
impurity measures with different sensitivities to costs [9]. Decision trees have
shown promising results on many problems, nevertheless, their performance can
be improved by a majority vote that combines the outcomes from many largely
independent decision trees. A single tree is inclined to overfitting which causes a
high variance. The random forest algorithm [5] tackles this instability by build-
ing several trees based on two randomization concepts: First, the training sets
are varied by bootstrap aggregating, an equally-distributed random selection of
records with replacement. Second, at each splitting step, it selects only s random
attributes. This has the additional advantage that the trees can be constructed
with very few or even without any data queries in the first step, if s is set to one.
As a successful and well-interpretable learning model, in this paper, we focus on
secure multi-party computation models for decision trees.

Secure multi-party ID3 on vertically partitioned data: The first work on ver-
tically partitioned data for two parties was proposed by Du and Zahn [10]. In
order to count the records that support a particular attribute or class value, they
suggest that every party fills a binary vector with a one, if a record conforms
with the currently examined attributes, and a zero, if a record does not. A secure
shared two-party scalar product protocol and a secure shared logarithm protocol
on these vectors allow to calculate the conditional entropy without revealing the
involved records. Similar to our architecture, these protocols are lightweight so-
lutions, and require a commodity server that should not collude with any of the



parties. However, this approach is hardly extensible to an n-party solution. The
other drawback is the possibility of revealing sensitive data by making inferences
from the public decision tree.

To solve the inference problem, some approaches use trees whose nodes are
mapped to the attributes that are only visible for the corresponding party [26,
23]. Vaidya and Clifton propose a private set intersection protocol (PSIP) [26],
which can be applied in the same way as the scalar product protocol [10]. Their
PSIP is based on public homomorphic encryption [8], and it requires a high num-
ber of key bits which increases the runtime significantly. Recently, some private
set intersection protocols that use symmetric key encryption have been devel-
oped [16, 17], however, the communication costs still remain relatively high. In
another approach [23], each party finds the attributes with the highest informa-
tion gain independently from the other parties at each branch step. The party
with the attribute of the highest gain executes the split and broadcasts the sep-
aration of the records, but not the identity of the split attribute. This approach
is only feasible if each party holds the class attribute. The other downside of
this approach is that the similarities among different records can still be leaked.
Both of these two approaches can support two or several parties.

Decision trees on randomized data: Randomization approaches usually lead to
faster results, but imply a trade-off between the individual’s privacy and the
quality of the results. The first randomization based multi-party tree induction
used a multi-group randomized response (MRR) scheme [27] that works as fol-
lows: The attributes are partitioned into groups. In a first step, coin-flipping is
conducted for each group and a user either tells the truth about all attributes
in the same group or tells a lie about all of them. The trade-off between privacy
and performance is regulated by a fixed probability of lie. One party works as
a data collector of all randomized data sets and executes the ID3 algorithm on
the collection. The cost of tree building and the accuracy loss can be reduced
by employing a hybrid of MRR and SMC [25]. The ω attributes that have the
highest information gains on the combined randomized data are selected and
evaluated on a private dot product or intersection protocol.

Recently, many ε-differential solutions for ID3 [12, 15] and tree ensembles [14,
3, 22, 19] were proposed. A solution is ε-differential private if the outcome of a
calculation is insensitive to any particular record in the data set:

Definition 1. A randomized computation M provides ε-differential privacy, if
for any datasets A and B with symmetric difference A4B = 1, and any set of
possible outcomes S ⊆ Range(M), Pr[M(A) ∈ S] ≤ Pr[M(B) ∈ S]× eε.

The randomization is obtained by the addition of noise, and the ε-parameter
can be seen as a “privacy budget”. As it fulfills the composability property, the
parameters of consecutive queries can be accumulated. The major drawback,
especially of the ID3 solutions, is the high variance in the accuracies, and that
only the individual’s privacy is preserved, but not the private attribute distri-
butions. Therefore, random decision trees have been shown to be more efficient



and provide better security than ID3 induced trees in the context of differential
privacy [22].

Private tree evaluation with a client-server architecture: The field of privacy-
preserving decision tree evaluation is a different, yet somewhat related to what
we already discussed. Here, a server has a sensitive model and a client has sensi-
tive attribute vectors as input. The goal is to classify the client’s data while the
sensitive inputs (model and query) remain hidden from the counterparty. Many
approaches use homomorphic encryption [6, 4, 13, 24]. Wu et al. [4] and Tai et
al. [24] reduce the protocol complexity to be linear with respect to the num-
ber of decision nodes by representing the decision trees, which are high-degree
polynomials, as linear functions.

3 Client/Vertical-Servers Random Forest

In this section, we explain our proposed client-server architecture in detail. First,
we establish the problem definition. Then, we explain the private set intersec-
tion protocol, and how to build and apply the decision tree in a client-server
architecture. Finally, we analyze the security of our proposed architecture.

3.1 Problem Setting

Problem description: In this work, we consider the classification problem in the
hybrid context of vertically partitioned data and the client-server architecture.
Our proposed architecture is composed of two modes: a training phase in which
the decision tree is built, and an evaluation mode where a test instance of a client
is classified by the existing private model. In the training phase, we have m input
vectors (training instances), whose attributes are distributed on n vertical servers
pi. Let Xi[j] denote the attribute values of the record j that is known by pi.
The target value is held by the class server pc, which can be one of the vertical
servers, individual clients, or any other party. In the evaluation phase, one client
c’s query is classified by a trained model f(x).

Constraints and assumptions: The classification is a private service, such that
no vertical server pi is able to reveal any information about the attributes (Xi[j])
and the target value of c or similarities to other clients or training records. The
client should not learn anything about the underlying model or any Xi[j] than
what can be deduced from f(c). We allow the use of a semi-honest commodity
server cs, which must not collude with any pi and receives nothing but anony-
mous data.

3.2 Client/Vertical-Servers Set Intersection Protocol

We provide a special variant of a private set intersection as a major building
block of both our model training and classification protocol. Assume that each



Algorithm 1: Client/Vertical-Servers Set Intersection (CVSSI)

input : A vector Di ∈ {0, 1}s for each server pi, i ∈ {1, ..., n},
a collusion threshold parameter T

output: A vector Y ∈ {0, 1}s, where Y [j] =
n∏
i=1

Di[j]

1 for j ← 1 to s do
2 foreach server pi do
3 r0i [j]← new random number
4 for t← 1 to T do
5 rti [j]← new random number
6 send rti [j] to server pi+t mod n

7 Ri[j]←
T∑
t=0

rti [j]

8 send Ri[j] to client
9 for t← T to 1 do

10 receive rti−t mod n[j] from server pi−t mod n

11 Si[j]←


T∑
t=0

rti−t mod n[j] ifDi[j] = 0

new random number else

12 send Si[j] to client

13 for client do

14 Y [j]←

1 if
n∑
i=1

(Ri[j]− Si[j]) = 0

0 else

vertical server pi contains a binary vector Di ∈ {0, 1}s, where Di[k] = 1 if pi
supports the element k, and Di[k] = 0, otherwise. The output is a binary vector
Y ∈ {0, 1}s with

Y [j] =

n∏
i=1

Di[j]. (1)

No vertical server pi is allowed to reveal any value of Dj , j 6= i or f(c). Let
T be a collusion threshold parameter. If less than T servers collude with each
other, they can only exchange their inputs, but cannot induce input values of
any other server or f(c). A client cl receives the output, but should not learn
anything else. Algorithm 1 solves this problem and calculates each Y [j] ∈ Y
independently from the others via a zero-sharing method. In zero-sharing, the
servers distribute random numbers that sum up to zero. Then, every pi sends
its shares to cl if Di[j] = 1.

Algorithm 1 explains the steps of checking whether an element d is supported
by all vertical servers in detail. All arithmetics are modulo integer operations
in a sufficiently large field with the bit length b and all random numbers are
uniformly distributed within this field. First, every pi generates T + 1 random



Fig. 1: Example of a random tree skeleton.

Table 1: Example of privately labeled tree.

Vertical Server Node Attribute

p1 1 Outlook
p1 3,4,5 Humidity
p2 2,6,7 Overcast

numbers, {r0i , ..., rTi }, where T ∈ [1, n−1] (lines 3-5), sends their sum to cl (lines
7-8) and scatters {r1i , ..., rTi } to T other servers (line 6 and 10). Then, every
pi sends the sum of r0i [j] and all received values to cl, if it holds d; otherwise,
it sends a random number (lines 11-12). The client cannot distinguish between
this random number or the sum, which is composed of other random numbers.
The client adds up all values it received in the first round and subtracts all the
values that were received in the second round (line 14). If the result is zero, d
is not held by all servers with certainty, but in case the results do not sum up
to zero, all the servers hold d with a probability of 1 − 1/2b. The probability
of a false positive is therefore negligible. For our classification purposes, the
size of an intersection should be always one (see sections 3.3, 3.4). Hence, the
occurrence of a false positive can be detected easily and the procedure restarts
for the candidate elements with new random seeds.

3.3 Building a Privacy-Preserved Random Forest

Algorithm 2 presents the training steps of a private random forest. The model is
distributed over all vertical servers and a commodity server. Each one receives the
same tree skeletons similar to the model already proposed by other authors [23,
26] (lines 1-3). It maps an identifier and a party pi to each branch in a random
assignment process. Every server maps selected attributes to each node randomly
(lines 4-6). Figure 1 illustrates a sample tree skeleton and Table 1 indicates its
privately labeled tree.

As the tree is built randomly, no data records have been used yet. In the
following steps, only the commodity server cs learns the class value distributions
of the leaves. It receives an assignment of a leaf node to each instance for each
decision tree of the random forest. As long as cs does not collude with any
vertical server, it cannot associate any attribute or class label with the identity
of any instance. Algorithm 1 generates the leaf node that is provided to cs and



Algorithm 2: Client/Vertical-Servers Random Forest Training

input : An attribute vector Xi[j] for each training instance j ∈ {1, ...,m} of
each vertical server pi, i ∈ {1, ..., n},
a collusion threshold parameter T ,
a commodity server cs,
a server pc, that holds the class values C[j] ∈ C,
the number of trees in a forest o

output: A mapping M : N 7→ C, that maps the index of each leaf node to the
most associated class value

1 for one arbitrary server do
2 for k ← 1 to o do // for each tree of random forest do

3 treek ← new RandomTreeSkeleton()

4 for k ← 1 to o do // for each tree of random forest do

5 foreach vertical server pi do
6 treeki ← pi.labelPrivately(tree

k)

7 for j ← 1 to m do // for each record do

8 for k ← 1 to o do // for each tree of random forest do

9 foreach vertical server pi do
10 Di ← pi.getAllCandidateLeafs(Xi[j], tree

k
i )

11 leafID ← CVSSI({Di}, T)

12 cs.store(leafID, pc.getClassValue(C[j]))

the commodity server is treated as a client in this context. First, a preprocessing
step is executed and each pi assigns Di[l] with a one if the instance j reaches the
leaf l (based on the attributes in Xi[j]), or a zero if not (line 10). Let {Di} denote
the collection of private vectors Di of all pi. We get the output of Algorithm 1 for
the record j, which is the leaf ID, leafID (line 11). Then the commodity server
updates the class distribution statistics of leafID with f(j) which is received
from the class server pc (line 12).

3.4 Client/Vertical-Servers Random Forest Classification

To classify a test instance c for a client whose attributes are stored at the vertical
servers, we apply Algorithm 3. For that, all vertical servers pi need to initialize a
vector Di with one at Di[l] if c reaches the leaf l or with zero, otherwise (line 3).
Client c conforms to cl in algorithm 1, so it receives the leafID = c.leafIDstree
corresponding to its attributes for each decision tree (line 4). Subsequently, it
sends a request with all the leaf IDs to the commodity server to receive the most
likely class label.

Note about the client-commodity server communication: The communication
between c and cs is straightforward. Note that cs can read the client’s request



Algorithm 3: Client/Vertical-Servers Random Forest Classification

input : an attribute vector Xi[c] of each vertical server pi, i ∈ {1, ..., n},
a collusion threshold parameter T ,
a commodity server cs with a mapping M : N 7→ C, that maps the
index of each leaf node to the most associated class value,
a client c,
an ensemble of o× n decision trees {treeki }

output: Classification of c

1 for k ← 1 to o do // for each tree of random forest do

2 foreach vertical server pi do
3 Di ← pi.getAllCandidateLeafs(Xi[c], tree

k
i )

4 c.leafIDs tree ← CVSSI({Di}, T)
5 c.classValue ← cs.classify(c.leafIDs)

in clear text, but the client can communicate with the commodity server anony-
mously, so that cs cannot link the request with any other sensitive data or
the identity of c. This communication can be done via a string-select oblivi-
ous transfer protocol, so that the commodity server does not learn the input of
the client (leafIDs) and the output of the protocol. Kolesnikov et al. [17] pro-
vide an efficient 1-of-n oblivious transfer protocol, which can be applied here. It
requires roughly four times the costs of a 1-out-of-2 oblivious transfer in an amor-
tized setting and, therefore, is highly scalable. Moreover, c should get a shared
one-time-password by one or more parties to prevent it from sending multiple
malicious requests to cs, and not to be able to deduce sensitive information
about the model and the underlying data. If these passwords are generated by
the vertical servers, cs cannot associate them with individual clients even if the
communication is not oblivious.

3.5 Security Analysis

In this section, we analyze the robustness of Algorithm 1−3 to information leak-
age. In Algorithm 2 (line 11) and 3 (line 4), the interactions among servers are
limited to the interactions in Algorithm 1, hence, the security aspects of Algo-
rithm 1 are directly transferable to them. Assuming that cs does not collude
with any other server, the leaf IDs, class labels and input of vertical servers are
secure against semi-honest and malicious attacks. The security level of the com-
munication between the client and the commodity server (line 5 of Algorithm 3)
is adaptable as discussed in section 3.4. Here, we will discuss different security
aspects of Algorithm 1:

– Disclosure of the output: The goal of Algorithm 1 is that the vertical
servers input their private sets and the commodity server receives the in-
tersection as the output. Assume that one or more parties try to reveal
information about the output. The only messages they receive are random



based zero-shares of other servers, which are independent from both their
own input and any input of other parties. Consequently, even malicious par-
ties have no opportunity to disclose anything about the output.

– Association of input and output: In case of a collusion between the
commodity server and a vertical server, the collaborators can associate the
identities of all the training records to their corresponding sensitive class
values and leaf nodes, and therefore, similarities between the records as well.
That is the reason for the requirement of having a trusted commodity server,
which does not collude with any vertical server. Despite this restriction, using
a commodity server improves the runtime effectively, and – according to [10]
– finding such a cs is feasible in practice. It makes no difference if the cs
is semi-honest (also known as honest-but-curious) or malicious, because it
acts only as a receiver in the training mode and receives only unconditional
messages that it cannot manipulate by own messages in the classification
mode.

– Disclosure of the input of other parties: In the multi-party setting,
there is a general risk of collusion between the data holding parties to com-
bine their input data maliciously in order to violate an individual’s privacy.
However, this risk exists independent of the data mining protocols, hence
it cannot be prevented in their design. As a protocol dependent aspect, we
consider a case where b colluding vertical servers try to reveal the input data
of one or more other servers. Looking into the Algorithm 1 indicates that
there is no difference between semi-honest and malicious behaviour again.
In the first part of algorithm (lines 3-8), every vertical server distributes
numbers independent of each other. In the second part (lines 9-12), Si[j]
comprises either r0i [j] or another random number but no direct input data
besides the numbers of other parties. This procedure happens independent
of the messages of other parties, and consequently the public input of any
party (Si[j]) does not reveal any information if the numbers sent by other
parties are generated randomly or with a malicious intention.
One adversary might try to find out whether an element d is supported by all
parties or a particular vertical server px. The question if all parties hold d is
defined by

∑n
i=0(Ri−Si). Since each Si[j] is directly sent to the commodity

server, only the commodity server (or all pi together) is able to learn it. In
order to find out whether a particular vertical server px holds d, adversaries
have to know if:

Sx =

T∑
t=0

rtx−t mod n ⇔ Sx =

T∑
t=1

rtx−t mod n + r0x. (2)

The only exception is if all pi support d, because in that case, it is trivial
that a particular vertical server does it too. Sx is only known by px and
the commodity server. Given a random Sx, it cannot be calculated from
other values. Arranging the vertical servers in a cycle in clockwise direction,∑T
t=1 r

t
x−t mod n can only be calculated by the T servers on the right side of

px. r0x is only known by px or can be calculated from Rx −
∑T
t=1 r

t
x, where



Rx is only known by px and commodity server and
∑T
t=1 r

t
i can only be

calculated by the T servers on the left side of pi. In conclusion, at least
min(n− 1, 2T ) colluding vertical servers and the commodity server are nec-
essary to find out whether a particular party px supports an element d.

4 Experimental Results and Complexity

4.1 Experiment Settings and Datasets

We implemented and tested the main random forest framework in Java, with
four versions of the private set intersection:

1. The CVSSI protocol as designed in Algorithm 1.
2. Du02 version where we used a modified version of the scalar product protocol

by Du and Zhan [10], such that the commodity server receives the output.
This version has the constraint of a commodity server like our CVSSI pro-
tocol and is very fast, but can only be used for two-party problems.

3. A simple asymmetric public-key encryption scheme (Paillier encryption) that
Vaidya and Clifton first used in the distributed decision tree context [26,
8], because it fulfills the requirement of additive homomorphy. One party
encrypts the identifier of d if it supports the element d else a zero with the
public key. Then, each vertical server multiplies the encrypted intermediate
result of its predecessor with a one if it supports d and with a zero if it does
not. At the end, the results for each d are summed up, so that the total
result is the encryption of d, because in our case only one d is supported
by all parties together. Only the commodity server has the private key and
can decrypt the result of the last vertical server and gets either a one or a
zero. For simplicity, we do not use the state-of-the-art Paillier encryption,
but give an idea of homomorphic encryption techniques.

4. A procedure with public splits like by Suthampan and Maneewongvatana
[23] instead of a private set intersection method as a baseline, which is very
straightforward, but reveals information we want to protect.

All experiments were executed on a single device with a dual core intel i7-5500U
cpu and a 8GB RAM. For the current results, we did not use a framework to
simulate bandwidth and latency of a network of different devices. We tested
the scalability on different real-world datasets of the UCI Machine Learning
Repository with different parameters: number of vertical servers n, the collusion
threshold parameter T , and the number of leaf nodes. The number of leaf nodes
is βδ, if the tree depth δ and the number of splits in a branch β are fixed in our
experiments.

4.2 Complexity Comparison

The computational complexity of Algorithm 1 is O(s × n × T ), with the vec-
tor length s, the number of vertical servers n and T < n. The algorithm Du02



Table 2: Communication costs

Intersection protocol 2 vertical server > 2 vertical server

Du02 4s ∗ b -
CVSSI 6s ∗ b s ∗ n ∗ (T + 2) ∗ b
Paillier encryption 2s ∗B s ∗ n ∗B
Non private - -

64 128 256 512 1024 2048 4096 8192

0.1

1

60

3600

B

ru
n
ti

m
e

in
se

c

Fig. 2: Runtime of Paillier set intersection with three parties and vector length
1000.

requires O(s) elementary operations, which is of the same order in a two-party
setting. The Paillier encryption version consumes (s+1)n bit multiplications for
the encryption and summation and one bit exponentiation for the decryption.
The fourth, not private version does not use a set intersection protocol. Instead,
one responsible party broadcasts the supported records at each branch and leaf
node. Hence, there are no computation and communication costs for a set inter-
section computation. Table 2 shows the communication costs depending on the
bit length b of a data type and B as the bit length of a public key.

Apart from some initialization costs, Algorithm 2 calls m× o times a private
set intersection protocol with the input size βδ. Before the set intersection can be
executed, every vertical server has to do the preprocessing step of filling the input
vectors with a complexity of O(βδ). This equates to a total computation and
communication complexity of O(m×n×o×T×βδ) in connection with Algorithm
1 (CVSSI). The total complexity of the non-private version is O(m×n×o×βδ).
This is because all supported records are broadcast to every vertical server at
each tree node once. In the deeper nodes, the number of supported instances is
much smaller than m.

4.3 Performance Analysis

Figure 2 visualizes the exponential dependency of the runtime of homomorphic
encryption schemes in relation to key bit length B. The German federal office for



2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

vector length in 105

ru
n
ti

m
e

in
se

c

Fig. 3: Runtime of CVSSI (number of vertical servers: 4, T = 3, 100 repetitions).

2 4 6 8 10

0.2

0.4

number of vertical servers

ru
n
ti

m
e

in
se

c

Fig. 4: Runtime of CVSSI (vector length: 106, T = 3).

information security recommends a key length of 2,000 to 3,000 bits [7], which
leads to a runtime of a few minutes for a single small vector with 1,000 elements
in [26] and our experiments. This is rather infeasible for the whole tree building
and classification procedure. Our CVSSI algorithm requires 1 ms for this task.
The recently published private set intersection protocol by Kolesnikov et al. [17]
runs also in less than a second in their environment and might be an alternative
building block. However, one has to consider that the authors in [17] used a
much more elaborate framework to simulate communication costs than we did.

Figures 3 and 4 confirm the linear scalability of our CVSSI algorithm in terms
of n and o. We obtain similar results for T . They also show that the protocol
is feasible for larger vector sizes and a higher number of involved servers. Table
3 contrasts the runtimes of the four versions on the small car dataset (1728
instances) with a small number of trees (5) in a two vertical server setting. 90
% of the instances are used for training and 10 % for testing. As expected, the
Paillier encryption version requires several minutes, although we set B to the



Table 3: Runtime on the car dataset, with two parties, 4 splits per branch, tree
depth 5, in seconds and 10 random trees.

trees Paillier enc. CVSSIP Du02 Without PSI

1 115.519 0.464 0.080 0.003
2 238.991 0.922 0.169 0.006
4 461.899 1.796 0.321 0.008
6 693.079 2.701 0.466 0.011
8 919.099 3.591 0.639 0.014

10 1,165.374 4.631 0.833 0.015

Table 4: Runtime of CVSSIP on UCI ML data sets with five parties and 20
random trees.

dataset n βδ runtime (s)

cars 1,728 46 155.7
contraceptive 1,473 29 16.8
hepatitis (no missing values) 80 217 11,507.4
nursery 12,960 57 22,783.6
phishing websites 11,055 213 16,231.7
thoraric surgery 470 213 173.1

unacceptably low value of 64. Our approach, the CVSSI protocol, takes less than
half a second per tree. The Du02 version performs up to six times faster than
our approach, which might be due to more effective vector operations in our
implementations. The variant without private set intersection suggests further
potential for improvement, but suffers from the inference problem. Table 4 shows
the runtime of CVSSIP on real-world data sets with five parties and 20 randomly
generated trees in seconds. This suggests that the approach is feasible in practice.

5 Conclusion

We presented a new architecture which is a hybrid approach of private evaluation
and classification on vertically partitioned data. This setting might become more
interesting in the future with the increasing use of private data and collaborations
of companies, governments and different organizations. We provided a closed,
lightweight and feasible solution with adaptable security levels. Additionally,
it is highly parallelizable. The main drawback is the assumption of a central
non-colluding commodity server. Making use of the results of Kolesnikov et al.
on 1-out-of-n oblivious transfer and private set intersection [16, 17], it may be
possible to overcome this dependency in the future.

References

1. Aggarwal, C.C., Yu, P.S.: A General Survey of Privacy-Preserving Data Mining
Models and Algorithms, pp. 11–52. Springer US, Boston, MA (2008)



2. Blockeel, H., Raedt, L.D.: Top-down induction of first-order logical decision trees.
Artificial Intelligence 101(1), 285 – 297 (1998)

3. Bojarski, M., Choromanska, A., Choromanski, K., Lecun, Y.: Differentially- and
non-differentially-private random decision trees (10 2014)

4. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over
encrypted data. Cryptology ePrint Archive, Report 2014/331 (2014)

5. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (Oct 2001)
6. Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote

diagnostics. In: Proceedings of the 14th ACM Conference on Computer and Com-
munications Security (CCS). pp. 498–507 (2007)

7. Bundesamt für Sicherheit in der Informationstechnik: Kryptographische ver-
fahren: Empfehlungen und schluessellaengen (05 2018), https://www.bsi.bund.
de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/

TR02102/BSI-TR-02102.pdf?__blob=publicationFile&v=8

8. Damgrd, I., Jurik, M., Nielsen, J.: A generalization of pailliers public-key system
with applications to electronic voting 9, 371–385 (04 2003)

9. Drummond, C., Holte, R.C.: R.c.: Exploiting the cost (in)sensitivity of decision
tree splitting criteria. In: International Conference on Machine Learning (ICML).
pp. 239–246 (2000)

10. Du, W., Zhan, Z.: Building decision tree classifier on private data. In: Proceed-
ings of the IEEE International Conference on Privacy, Security and Data Mining
(CRPIT) - Volume 14. pp. 1–8 (2002)

11. Emekci, F., Sahin, O., Agrawal, D., Abbadi, A.E.: Privacy preserving decision tree
learning over multiple parties. Data & Knowledge Engineering 63(2), 348 – 361
(2007)

12. Friedman, A., Schuster, A.: Data mining with differential privacy. In: Proceedings
of the 16th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD). pp. 493–502 (2010)

13. J. Wu, D., Feng, T., Naehrig, M., Lauter, K.: Privately evaluating decision trees
and random forests 2016 (02 2016)

14. Jagannathan, G., Pillaipakkamnatt, K., Wright, R.N.: A practical differentially
private random decision tree classifier. In: IEEE International Conference on Data
Mining Workshops. pp. 114–121 (Dec 2009)

15. Kaghazgaran, P., Takabi, H.: Differentially private decision tree learning from dis-
tributed data (05 2015)

16. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
prf with applications to private set intersection. In: Proceedings of the ACM SIG
SAC Conference on Computer and Communications Security (CCS). pp. 818–829
(2016)

17. Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-
party private set intersection from symmetric-key techniques. In: Proceedings of
the ACM SIG SAC Conference on Computer and Communications Security (CCS).
pp. 1257–1272 (2017)

18. Lindell, Pinkas: Privacy preserving data mining. Journal of Cryptology 15(3), 177–
206 (Jun 2002)

19. Liu, X., Li, Q., Li, T., Chen, D.: Differentially private classification with decision
tree ensemble. Applied Soft Computing 62, 807 – 816 (2018)

20. Ma, Q., Ping, D.: Secure multi-party protocols for privacy preserving data mining
(10 2008)

21. Quinlan, J.: Induction of decision trees. Machine Learning 1(1), 81–106 (Mar 1986)



22. Sravya, C.L., Lakshmi, G.R.: Privacy-preserving data mining with random decision
tree framework (2017)

23. Suthampan, E., Maneewongvatana, S.: Privacy preserving decision tree in multi
party environment. In: Lee, G.G., Yamada, A., Meng, H., Myaeng, S.H. (eds.)
Information Retrieval Technology. pp. 727–732. Springer Berlin Heidelberg, Berlin,
Heidelberg (2005)

24. Tai, R.K.H., Ma, J.P.K., Zhao, Y., Chow, S.S.M.: Privacy-preserving decision trees
evaluation via linear functions. In: European Symposium on Research in Computer
Security (ESORICS). pp. 494–512. Springer International Publishing (2017)

25. Teng, Z., Du, W.: A hybrid multi-group privacy-preserving approach for building
decision trees (05 2007)

26. Vaidya, J., Clifton, C.: Privacy-preserving decision trees over vertically partitioned
data. In: Data and Applications Security XIX. pp. 139–152. Springer Berlin Hei-
delberg (2005)

27. Zhan, J.Z., Chang, L., Matwin, S.: Privacy-preserving multi-party decision tree
induction. In: Research Directions in Data and Applications Security XVIII. pp.
341–355. Springer US (2004)


